Metamath Proof Explorer


Theorem rexneg

Description: Minus a real number. Remark BourbakiTop1 p. IV.15. (Contributed by FL, 26-Dec-2011) (Proof shortened by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion rexneg AA=A

Proof

Step Hyp Ref Expression
1 df-xneg A=ifA=+∞−∞ifA=−∞+∞A
2 renepnf AA+∞
3 ifnefalse A+∞ifA=+∞−∞ifA=−∞+∞A=ifA=−∞+∞A
4 2 3 syl AifA=+∞−∞ifA=−∞+∞A=ifA=−∞+∞A
5 renemnf AA−∞
6 ifnefalse A−∞ifA=−∞+∞A=A
7 5 6 syl AifA=−∞+∞A=A
8 4 7 eqtrd AifA=+∞−∞ifA=−∞+∞A=A
9 1 8 eqtrid AA=A