Metamath Proof Explorer


Theorem rexsupp

Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by AV, 27-May-2019)

Ref Expression
Assertion rexsupp FFnXXVZWxsuppZFφxXFxZφ

Proof

Step Hyp Ref Expression
1 elsuppfn FFnXXVZWxsuppZFxXFxZ
2 1 anbi1d FFnXXVZWxsuppZFφxXFxZφ
3 anass xXFxZφxXFxZφ
4 2 3 bitrdi FFnXXVZWxsuppZFφxXFxZφ
5 4 rexbidv2 FFnXXVZWxsuppZFφxXFxZφ