Metamath Proof Explorer


Theorem rhm1

Description: Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses rhm1.o 1˙=1R
rhm1.n N=1S
Assertion rhm1 FRRingHomSF1˙=N

Proof

Step Hyp Ref Expression
1 rhm1.o 1˙=1R
2 rhm1.n N=1S
3 eqid mulGrpR=mulGrpR
4 eqid mulGrpS=mulGrpS
5 3 4 rhmmhm FRRingHomSFmulGrpRMndHommulGrpS
6 eqid 0mulGrpR=0mulGrpR
7 eqid 0mulGrpS=0mulGrpS
8 6 7 mhm0 FmulGrpRMndHommulGrpSF0mulGrpR=0mulGrpS
9 5 8 syl FRRingHomSF0mulGrpR=0mulGrpS
10 3 1 ringidval 1˙=0mulGrpR
11 10 fveq2i F1˙=F0mulGrpR
12 4 2 ringidval N=0mulGrpS
13 9 11 12 3eqtr4g FRRingHomSF1˙=N