Metamath Proof Explorer


Theorem rhmmhm

Description: A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypotheses isrhm.m M=mulGrpR
isrhm.n N=mulGrpS
Assertion rhmmhm FRRingHomSFMMndHomN

Proof

Step Hyp Ref Expression
1 isrhm.m M=mulGrpR
2 isrhm.n N=mulGrpS
3 1 2 isrhm FRRingHomSRRingSRingFRGrpHomSFMMndHomN
4 3 simprbi FRRingHomSFRGrpHomSFMMndHomN
5 4 simprd FRRingHomSFMMndHomN