Metamath Proof Explorer


Theorem riinn0

Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion riinn0 xXSAXAxXS=xXS

Proof

Step Hyp Ref Expression
1 incom AxXS=xXSA
2 r19.2z XxXSAxXSA
3 2 ancoms xXSAXxXSA
4 iinss xXSAxXSA
5 3 4 syl xXSAXxXSA
6 df-ss xXSAxXSA=xXS
7 5 6 sylib xXSAXxXSA=xXS
8 1 7 eqtrid xXSAXAxXS=xXS