Metamath Proof Explorer


Theorem rimrhmOLD

Description: Obsolete version of rimrhm as of 12-Jan-2025. (Contributed by AV, 22-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rhmf1o.b B=BaseR
rhmf1o.c C=BaseS
Assertion rimrhmOLD FRRingIsoSFRRingHomS

Proof

Step Hyp Ref Expression
1 rhmf1o.b B=BaseR
2 rhmf1o.c C=BaseS
3 1 2 isrim FRRingIsoSFRRingHomSF:B1-1 ontoC
4 3 simplbi FRRingIsoSFRRingHomS