Metamath Proof Explorer


Theorem ringacl

Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014)

Ref Expression
Hypotheses ringacl.b B = Base R
ringacl.p + ˙ = + R
Assertion ringacl R Ring X B Y B X + ˙ Y B

Proof

Step Hyp Ref Expression
1 ringacl.b B = Base R
2 ringacl.p + ˙ = + R
3 ringgrp R Ring R Grp
4 1 2 grpcl R Grp X B Y B X + ˙ Y B
5 3 4 syl3an1 R Ring X B Y B X + ˙ Y B