Metamath Proof Explorer


Theorem ringacl

Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014)

Ref Expression
Hypotheses ringacl.b B=BaseR
ringacl.p +˙=+R
Assertion ringacl RRingXBYBX+˙YB

Proof

Step Hyp Ref Expression
1 ringacl.b B=BaseR
2 ringacl.p +˙=+R
3 ringgrp RRingRGrp
4 1 2 grpcl RGrpXBYBX+˙YB
5 3 4 syl3an1 RRingXBYBX+˙YB