Metamath Proof Explorer


Theorem ringcomlem

Description: Lemma for ringcom . This (formerly) part of the proof for ringcom is also applicable for semirings (without using the commutativity of the addition given per definition of a semiring), see srgcom4lem . (Contributed by Gérard Lang, 4-Dec-2014) Variant of rglcom4d for rings. (Revised by AV, 5-Feb-2025)

Ref Expression
Hypotheses ringacl.b B=BaseR
ringacl.p +˙=+R
Assertion ringcomlem RRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y

Proof

Step Hyp Ref Expression
1 ringacl.b B=BaseR
2 ringacl.p +˙=+R
3 eqid R=R
4 1 2 3 ringdir RRingxByBzBx+˙yRz=xRz+˙yRz
5 4 ralrimivvva RRingxByBzBx+˙yRz=xRz+˙yRz
6 5 3ad2ant1 RRingXBYBxByBzBx+˙yRz=xRz+˙yRz
7 eqid 1R=1R
8 1 7 ringidcl RRing1RB
9 8 3ad2ant1 RRingXBYB1RB
10 1 3 7 ringlidm RRingxB1RRx=x
11 10 ralrimiva RRingxB1RRx=x
12 11 3ad2ant1 RRingXBYBxB1RRx=x
13 simp2 RRingXBYBXB
14 1 2 ringacl RRingxByBx+˙yB
15 14 3expb RRingxByBx+˙yB
16 15 ralrimivva RRingxByBx+˙yB
17 16 3ad2ant1 RRingXBYBxByBx+˙yB
18 1 2 3 ringdi RRingxByBzBxRy+˙z=xRy+˙xRz
19 18 ralrimivvva RRingxByBzBxRy+˙z=xRy+˙xRz
20 19 3ad2ant1 RRingXBYBxByBzBxRy+˙z=xRy+˙xRz
21 simp3 RRingXBYBYB
22 6 9 12 13 17 20 21 rglcom4d RRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y