Description: Lemma for ringcom . This (formerly) part of the proof for ringcom is also applicable for semirings (without using the commutativity of the addition given per definition of a semiring), see srgcom4lem . (Contributed by Gérard Lang, 4-Dec-2014) Variant of rglcom4d for rings. (Revised by AV, 5-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringacl.b | |
|
ringacl.p | |
||
Assertion | ringcomlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringacl.b | |
|
2 | ringacl.p | |
|
3 | eqid | |
|
4 | 1 2 3 | ringdir | |
5 | 4 | ralrimivvva | |
6 | 5 | 3ad2ant1 | |
7 | eqid | |
|
8 | 1 7 | ringidcl | |
9 | 8 | 3ad2ant1 | |
10 | 1 3 7 | ringlidm | |
11 | 10 | ralrimiva | |
12 | 11 | 3ad2ant1 | |
13 | simp2 | |
|
14 | 1 2 | ringacl | |
15 | 14 | 3expb | |
16 | 15 | ralrimivva | |
17 | 16 | 3ad2ant1 | |
18 | 1 2 3 | ringdi | |
19 | 18 | ralrimivvva | |
20 | 19 | 3ad2ant1 | |
21 | simp3 | |
|
22 | 6 9 12 13 17 20 21 | rglcom4d | |