Metamath Proof Explorer


Theorem srgcom4lem

Description: Lemma for srgcom4 . This (formerly) part of the proof for ringcom is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025) (Proof modification is discouraged.)

Ref Expression
Hypotheses srgcom4.b B=BaseR
srgcom4.p +˙=+R
Assertion srgcom4lem RSRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y

Proof

Step Hyp Ref Expression
1 srgcom4.b B=BaseR
2 srgcom4.p +˙=+R
3 eqid R=R
4 1 2 3 srgdir RSRingxByBzBx+˙yRz=xRz+˙yRz
5 4 ralrimivvva RSRingxByBzBx+˙yRz=xRz+˙yRz
6 5 3ad2ant1 RSRingXBYBxByBzBx+˙yRz=xRz+˙yRz
7 eqid 1R=1R
8 1 7 srgidcl RSRing1RB
9 8 3ad2ant1 RSRingXBYB1RB
10 1 3 7 srglidm RSRingxB1RRx=x
11 10 ralrimiva RSRingxB1RRx=x
12 11 3ad2ant1 RSRingXBYBxB1RRx=x
13 simp2 RSRingXBYBXB
14 1 2 srgacl RSRingxByBx+˙yB
15 14 3expb RSRingxByBx+˙yB
16 15 ralrimivva RSRingxByBx+˙yB
17 16 3ad2ant1 RSRingXBYBxByBx+˙yB
18 1 2 3 srgdi RSRingxByBzBxRy+˙z=xRy+˙xRz
19 18 ralrimivvva RSRingxByBzBxRy+˙z=xRy+˙xRz
20 19 3ad2ant1 RSRingXBYBxByBzBxRy+˙z=xRy+˙xRz
21 simp3 RSRingXBYBYB
22 6 9 12 13 17 20 21 rglcom4d RSRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y