Metamath Proof Explorer


Theorem srgcom4

Description: Restricted commutativity of the addition in semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by AV, 1-Feb-2025) (Proof modification is discouraged.)

Ref Expression
Hypotheses srgcom4.b B=BaseR
srgcom4.p +˙=+R
Assertion srgcom4 RSRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y

Proof

Step Hyp Ref Expression
1 srgcom4.b B=BaseR
2 srgcom4.p +˙=+R
3 srgmnd RSRingRMnd
4 3 3ad2ant1 RSRingXBYBRMnd
5 simp2 RSRingXBYBXB
6 simp3 RSRingXBYBYB
7 1 2 mndass RMndXBXBYBX+˙X+˙Y=X+˙X+˙Y
8 4 5 5 6 7 syl13anc RSRingXBYBX+˙X+˙Y=X+˙X+˙Y
9 8 eqcomd RSRingXBYBX+˙X+˙Y=X+˙X+˙Y
10 9 oveq1d RSRingXBYBX+˙X+˙Y+˙Y=X+˙X+˙Y+˙Y
11 1 2 srgacl RSRingXBXBX+˙XB
12 5 11 syld3an3 RSRingXBYBX+˙XB
13 1 2 mndass RMndX+˙XBYBYBX+˙X+˙Y+˙Y=X+˙X+˙Y+˙Y
14 4 12 6 6 13 syl13anc RSRingXBYBX+˙X+˙Y+˙Y=X+˙X+˙Y+˙Y
15 1 2 srgcom4lem RSRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y
16 1 2 srgacl RSRingXBYBX+˙YB
17 1 2 mndass RMndXBYBX+˙YBX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
18 4 5 6 16 17 syl13anc RSRingXBYBX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
19 1 2 mndass RMndYBXBYBY+˙X+˙Y=Y+˙X+˙Y
20 19 eqcomd RMndYBXBYBY+˙X+˙Y=Y+˙X+˙Y
21 4 6 5 6 20 syl13anc RSRingXBYBY+˙X+˙Y=Y+˙X+˙Y
22 21 oveq2d RSRingXBYBX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
23 1 2 srgacl RSRingYBXBY+˙XB
24 23 3com23 RSRingXBYBY+˙XB
25 1 2 mndass RMndXBY+˙XBYBX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
26 25 eqcomd RMndXBY+˙XBYBX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
27 4 5 24 6 26 syl13anc RSRingXBYBX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
28 22 27 eqtrd RSRingXBYBX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
29 15 18 28 3eqtrd RSRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y
30 10 14 29 3eqtrd RSRingXBYBX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y