Step |
Hyp |
Ref |
Expression |
1 |
|
srgcom4.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
srgcom4.p |
⊢ + = ( +g ‘ 𝑅 ) |
3 |
|
srgmnd |
⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Mnd ) |
5 |
|
simp2 |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
6 |
|
simp3 |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
7 |
1 2
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑋 ) + 𝑌 ) = ( 𝑋 + ( 𝑋 + 𝑌 ) ) ) |
8 |
4 5 5 6 7
|
syl13anc |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) + 𝑌 ) = ( 𝑋 + ( 𝑋 + 𝑌 ) ) ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑋 + 𝑌 ) ) = ( ( 𝑋 + 𝑋 ) + 𝑌 ) ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( 𝑋 + 𝑌 ) ) + 𝑌 ) = ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) ) |
11 |
1 2
|
srgacl |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 𝑋 ) ∈ 𝐵 ) |
12 |
5 11
|
syld3an3 |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑋 ) ∈ 𝐵 ) |
13 |
1 2
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( 𝑋 + 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
14 |
4 12 6 6 13
|
syl13anc |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
15 |
1 2
|
srgcom4lem |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
16 |
1 2
|
srgacl |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
17 |
1 2
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) ) |
18 |
4 5 6 16 17
|
syl13anc |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) ) |
19 |
1 2
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑌 ) = ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑌 + ( 𝑋 + 𝑌 ) ) = ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) |
21 |
4 6 5 6 20
|
syl13anc |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 𝑋 + 𝑌 ) ) = ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) |
22 |
21
|
oveq2d |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) = ( 𝑋 + ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) ) |
23 |
1 2
|
srgacl |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 + 𝑋 ) ∈ 𝐵 ) |
24 |
23
|
3com23 |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + 𝑋 ) ∈ 𝐵 ) |
25 |
1 2
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 + 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) ) |
26 |
25
|
eqcomd |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 + 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |
27 |
4 5 24 6 26
|
syl13anc |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |
28 |
22 27
|
eqtrd |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |
29 |
15 18 28
|
3eqtrd |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |
30 |
10 14 29
|
3eqtrd |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( 𝑋 + 𝑌 ) ) + 𝑌 ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |