Metamath Proof Explorer


Theorem srgidcl

Description: The unity element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgidcl.b B=BaseR
srgidcl.u 1˙=1R
Assertion srgidcl RSRing1˙B

Proof

Step Hyp Ref Expression
1 srgidcl.b B=BaseR
2 srgidcl.u 1˙=1R
3 eqid mulGrpR=mulGrpR
4 3 srgmgp RSRingmulGrpRMnd
5 3 1 mgpbas B=BasemulGrpR
6 3 2 ringidval 1˙=0mulGrpR
7 5 6 mndidcl mulGrpRMnd1˙B
8 4 7 syl RSRing1˙B