Metamath Proof Explorer


Theorem rglcom4d

Description: Restricted commutativity of the addition in a ring-like structure. This (formerly) part of the proof for ringcom depends on the closure of the addition, the (left and right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025)

Ref Expression
Hypotheses o2timesd.e φxByBzBx+˙y·˙z=x·˙z+˙y·˙z
o2timesd.u φ1˙B
o2timesd.i φxB1˙·˙x=x
o2timesd.x φXB
rglcom4d.a φxByBx+˙yB
rglcom4d.d φxByBzBx·˙y+˙z=x·˙y+˙x·˙z
rglcom4d.y φYB
Assertion rglcom4d φX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y

Proof

Step Hyp Ref Expression
1 o2timesd.e φxByBzBx+˙y·˙z=x·˙z+˙y·˙z
2 o2timesd.u φ1˙B
3 o2timesd.i φxB1˙·˙x=x
4 o2timesd.x φXB
5 rglcom4d.a φxByBx+˙yB
6 rglcom4d.d φxByBzBx·˙y+˙z=x·˙y+˙x·˙z
7 rglcom4d.y φYB
8 2 2 jca φ1˙B1˙B
9 oveq1 x=1˙x+˙y=1˙+˙y
10 9 eleq1d x=1˙x+˙yB1˙+˙yB
11 oveq2 y=1˙1˙+˙y=1˙+˙1˙
12 11 eleq1d y=1˙1˙+˙yB1˙+˙1˙B
13 10 12 rspc2v 1˙B1˙BxByBx+˙yB1˙+˙1˙B
14 8 5 13 sylc φ1˙+˙1˙B
15 14 4 7 3jca φ1˙+˙1˙BXBYB
16 oveq1 x=1˙+˙1˙x·˙y+˙z=1˙+˙1˙·˙y+˙z
17 oveq1 x=1˙+˙1˙x·˙y=1˙+˙1˙·˙y
18 oveq1 x=1˙+˙1˙x·˙z=1˙+˙1˙·˙z
19 17 18 oveq12d x=1˙+˙1˙x·˙y+˙x·˙z=1˙+˙1˙·˙y+˙1˙+˙1˙·˙z
20 16 19 eqeq12d x=1˙+˙1˙x·˙y+˙z=x·˙y+˙x·˙z1˙+˙1˙·˙y+˙z=1˙+˙1˙·˙y+˙1˙+˙1˙·˙z
21 oveq1 y=Xy+˙z=X+˙z
22 21 oveq2d y=X1˙+˙1˙·˙y+˙z=1˙+˙1˙·˙X+˙z
23 oveq2 y=X1˙+˙1˙·˙y=1˙+˙1˙·˙X
24 23 oveq1d y=X1˙+˙1˙·˙y+˙1˙+˙1˙·˙z=1˙+˙1˙·˙X+˙1˙+˙1˙·˙z
25 22 24 eqeq12d y=X1˙+˙1˙·˙y+˙z=1˙+˙1˙·˙y+˙1˙+˙1˙·˙z1˙+˙1˙·˙X+˙z=1˙+˙1˙·˙X+˙1˙+˙1˙·˙z
26 oveq2 z=YX+˙z=X+˙Y
27 26 oveq2d z=Y1˙+˙1˙·˙X+˙z=1˙+˙1˙·˙X+˙Y
28 oveq2 z=Y1˙+˙1˙·˙z=1˙+˙1˙·˙Y
29 28 oveq2d z=Y1˙+˙1˙·˙X+˙1˙+˙1˙·˙z=1˙+˙1˙·˙X+˙1˙+˙1˙·˙Y
30 27 29 eqeq12d z=Y1˙+˙1˙·˙X+˙z=1˙+˙1˙·˙X+˙1˙+˙1˙·˙z1˙+˙1˙·˙X+˙Y=1˙+˙1˙·˙X+˙1˙+˙1˙·˙Y
31 20 25 30 rspc3v 1˙+˙1˙BXBYBxByBzBx·˙y+˙z=x·˙y+˙x·˙z1˙+˙1˙·˙X+˙Y=1˙+˙1˙·˙X+˙1˙+˙1˙·˙Y
32 15 6 31 sylc φ1˙+˙1˙·˙X+˙Y=1˙+˙1˙·˙X+˙1˙+˙1˙·˙Y
33 oveq1 x=Xx+˙y=X+˙y
34 33 eleq1d x=Xx+˙yBX+˙yB
35 oveq2 y=YX+˙y=X+˙Y
36 35 eleq1d y=YX+˙yBX+˙YB
37 34 36 rspc2va XBYBxByBx+˙yBX+˙YB
38 4 7 5 37 syl21anc φX+˙YB
39 2 2 38 3jca φ1˙B1˙BX+˙YB
40 9 oveq1d x=1˙x+˙y·˙z=1˙+˙y·˙z
41 oveq1 x=1˙x·˙z=1˙·˙z
42 41 oveq1d x=1˙x·˙z+˙y·˙z=1˙·˙z+˙y·˙z
43 40 42 eqeq12d x=1˙x+˙y·˙z=x·˙z+˙y·˙z1˙+˙y·˙z=1˙·˙z+˙y·˙z
44 11 oveq1d y=1˙1˙+˙y·˙z=1˙+˙1˙·˙z
45 oveq1 y=1˙y·˙z=1˙·˙z
46 45 oveq2d y=1˙1˙·˙z+˙y·˙z=1˙·˙z+˙1˙·˙z
47 44 46 eqeq12d y=1˙1˙+˙y·˙z=1˙·˙z+˙y·˙z1˙+˙1˙·˙z=1˙·˙z+˙1˙·˙z
48 oveq2 z=X+˙Y1˙+˙1˙·˙z=1˙+˙1˙·˙X+˙Y
49 oveq2 z=X+˙Y1˙·˙z=1˙·˙X+˙Y
50 49 49 oveq12d z=X+˙Y1˙·˙z+˙1˙·˙z=1˙·˙X+˙Y+˙1˙·˙X+˙Y
51 48 50 eqeq12d z=X+˙Y1˙+˙1˙·˙z=1˙·˙z+˙1˙·˙z1˙+˙1˙·˙X+˙Y=1˙·˙X+˙Y+˙1˙·˙X+˙Y
52 43 47 51 rspc3v 1˙B1˙BX+˙YBxByBzBx+˙y·˙z=x·˙z+˙y·˙z1˙+˙1˙·˙X+˙Y=1˙·˙X+˙Y+˙1˙·˙X+˙Y
53 39 1 52 sylc φ1˙+˙1˙·˙X+˙Y=1˙·˙X+˙Y+˙1˙·˙X+˙Y
54 32 53 eqtr3d φ1˙+˙1˙·˙X+˙1˙+˙1˙·˙Y=1˙·˙X+˙Y+˙1˙·˙X+˙Y
55 1 2 3 4 o2timesd φX+˙X=1˙+˙1˙·˙X
56 55 eqcomd φ1˙+˙1˙·˙X=X+˙X
57 1 2 3 7 o2timesd φY+˙Y=1˙+˙1˙·˙Y
58 57 eqcomd φ1˙+˙1˙·˙Y=Y+˙Y
59 56 58 oveq12d φ1˙+˙1˙·˙X+˙1˙+˙1˙·˙Y=X+˙X+˙Y+˙Y
60 oveq2 x=X+˙Y1˙·˙x=1˙·˙X+˙Y
61 id x=X+˙Yx=X+˙Y
62 60 61 eqeq12d x=X+˙Y1˙·˙x=x1˙·˙X+˙Y=X+˙Y
63 62 rspcva X+˙YBxB1˙·˙x=x1˙·˙X+˙Y=X+˙Y
64 38 3 63 syl2anc φ1˙·˙X+˙Y=X+˙Y
65 64 64 oveq12d φ1˙·˙X+˙Y+˙1˙·˙X+˙Y=X+˙Y+˙X+˙Y
66 54 59 65 3eqtr3d φX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y