Description: Restricted commutativity of the addition in a ring-like structure. This (formerly) part of the proof for ringcom depends on the closure of the addition, the (left and right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | o2timesd.e | |
|
o2timesd.u | |
||
o2timesd.i | |
||
o2timesd.x | |
||
rglcom4d.a | |
||
rglcom4d.d | |
||
rglcom4d.y | |
||
Assertion | rglcom4d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o2timesd.e | |
|
2 | o2timesd.u | |
|
3 | o2timesd.i | |
|
4 | o2timesd.x | |
|
5 | rglcom4d.a | |
|
6 | rglcom4d.d | |
|
7 | rglcom4d.y | |
|
8 | 2 2 | jca | |
9 | oveq1 | |
|
10 | 9 | eleq1d | |
11 | oveq2 | |
|
12 | 11 | eleq1d | |
13 | 10 12 | rspc2v | |
14 | 8 5 13 | sylc | |
15 | 14 4 7 | 3jca | |
16 | oveq1 | |
|
17 | oveq1 | |
|
18 | oveq1 | |
|
19 | 17 18 | oveq12d | |
20 | 16 19 | eqeq12d | |
21 | oveq1 | |
|
22 | 21 | oveq2d | |
23 | oveq2 | |
|
24 | 23 | oveq1d | |
25 | 22 24 | eqeq12d | |
26 | oveq2 | |
|
27 | 26 | oveq2d | |
28 | oveq2 | |
|
29 | 28 | oveq2d | |
30 | 27 29 | eqeq12d | |
31 | 20 25 30 | rspc3v | |
32 | 15 6 31 | sylc | |
33 | oveq1 | |
|
34 | 33 | eleq1d | |
35 | oveq2 | |
|
36 | 35 | eleq1d | |
37 | 34 36 | rspc2va | |
38 | 4 7 5 37 | syl21anc | |
39 | 2 2 38 | 3jca | |
40 | 9 | oveq1d | |
41 | oveq1 | |
|
42 | 41 | oveq1d | |
43 | 40 42 | eqeq12d | |
44 | 11 | oveq1d | |
45 | oveq1 | |
|
46 | 45 | oveq2d | |
47 | 44 46 | eqeq12d | |
48 | oveq2 | |
|
49 | oveq2 | |
|
50 | 49 49 | oveq12d | |
51 | 48 50 | eqeq12d | |
52 | 43 47 51 | rspc3v | |
53 | 39 1 52 | sylc | |
54 | 32 53 | eqtr3d | |
55 | 1 2 3 4 | o2timesd | |
56 | 55 | eqcomd | |
57 | 1 2 3 7 | o2timesd | |
58 | 57 | eqcomd | |
59 | 56 58 | oveq12d | |
60 | oveq2 | |
|
61 | id | |
|
62 | 60 61 | eqeq12d | |
63 | 62 | rspcva | |
64 | 38 3 63 | syl2anc | |
65 | 64 64 | oveq12d | |
66 | 54 59 65 | 3eqtr3d | |