Step |
Hyp |
Ref |
Expression |
1 |
|
o2timesd.e |
β’ ( π β β π₯ β π΅ β π¦ β π΅ β π§ β π΅ ( ( π₯ + π¦ ) Β· π§ ) = ( ( π₯ Β· π§ ) + ( π¦ Β· π§ ) ) ) |
2 |
|
o2timesd.u |
β’ ( π β 1 β π΅ ) |
3 |
|
o2timesd.i |
β’ ( π β β π₯ β π΅ ( 1 Β· π₯ ) = π₯ ) |
4 |
|
o2timesd.x |
β’ ( π β π β π΅ ) |
5 |
|
rglcom4d.a |
β’ ( π β β π₯ β π΅ β π¦ β π΅ ( π₯ + π¦ ) β π΅ ) |
6 |
|
rglcom4d.d |
β’ ( π β β π₯ β π΅ β π¦ β π΅ β π§ β π΅ ( π₯ Β· ( π¦ + π§ ) ) = ( ( π₯ Β· π¦ ) + ( π₯ Β· π§ ) ) ) |
7 |
|
rglcom4d.y |
β’ ( π β π β π΅ ) |
8 |
2 2
|
jca |
β’ ( π β ( 1 β π΅ β§ 1 β π΅ ) ) |
9 |
|
oveq1 |
β’ ( π₯ = 1 β ( π₯ + π¦ ) = ( 1 + π¦ ) ) |
10 |
9
|
eleq1d |
β’ ( π₯ = 1 β ( ( π₯ + π¦ ) β π΅ β ( 1 + π¦ ) β π΅ ) ) |
11 |
|
oveq2 |
β’ ( π¦ = 1 β ( 1 + π¦ ) = ( 1 + 1 ) ) |
12 |
11
|
eleq1d |
β’ ( π¦ = 1 β ( ( 1 + π¦ ) β π΅ β ( 1 + 1 ) β π΅ ) ) |
13 |
10 12
|
rspc2v |
β’ ( ( 1 β π΅ β§ 1 β π΅ ) β ( β π₯ β π΅ β π¦ β π΅ ( π₯ + π¦ ) β π΅ β ( 1 + 1 ) β π΅ ) ) |
14 |
8 5 13
|
sylc |
β’ ( π β ( 1 + 1 ) β π΅ ) |
15 |
14 4 7
|
3jca |
β’ ( π β ( ( 1 + 1 ) β π΅ β§ π β π΅ β§ π β π΅ ) ) |
16 |
|
oveq1 |
β’ ( π₯ = ( 1 + 1 ) β ( π₯ Β· ( π¦ + π§ ) ) = ( ( 1 + 1 ) Β· ( π¦ + π§ ) ) ) |
17 |
|
oveq1 |
β’ ( π₯ = ( 1 + 1 ) β ( π₯ Β· π¦ ) = ( ( 1 + 1 ) Β· π¦ ) ) |
18 |
|
oveq1 |
β’ ( π₯ = ( 1 + 1 ) β ( π₯ Β· π§ ) = ( ( 1 + 1 ) Β· π§ ) ) |
19 |
17 18
|
oveq12d |
β’ ( π₯ = ( 1 + 1 ) β ( ( π₯ Β· π¦ ) + ( π₯ Β· π§ ) ) = ( ( ( 1 + 1 ) Β· π¦ ) + ( ( 1 + 1 ) Β· π§ ) ) ) |
20 |
16 19
|
eqeq12d |
β’ ( π₯ = ( 1 + 1 ) β ( ( π₯ Β· ( π¦ + π§ ) ) = ( ( π₯ Β· π¦ ) + ( π₯ Β· π§ ) ) β ( ( 1 + 1 ) Β· ( π¦ + π§ ) ) = ( ( ( 1 + 1 ) Β· π¦ ) + ( ( 1 + 1 ) Β· π§ ) ) ) ) |
21 |
|
oveq1 |
β’ ( π¦ = π β ( π¦ + π§ ) = ( π + π§ ) ) |
22 |
21
|
oveq2d |
β’ ( π¦ = π β ( ( 1 + 1 ) Β· ( π¦ + π§ ) ) = ( ( 1 + 1 ) Β· ( π + π§ ) ) ) |
23 |
|
oveq2 |
β’ ( π¦ = π β ( ( 1 + 1 ) Β· π¦ ) = ( ( 1 + 1 ) Β· π ) ) |
24 |
23
|
oveq1d |
β’ ( π¦ = π β ( ( ( 1 + 1 ) Β· π¦ ) + ( ( 1 + 1 ) Β· π§ ) ) = ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π§ ) ) ) |
25 |
22 24
|
eqeq12d |
β’ ( π¦ = π β ( ( ( 1 + 1 ) Β· ( π¦ + π§ ) ) = ( ( ( 1 + 1 ) Β· π¦ ) + ( ( 1 + 1 ) Β· π§ ) ) β ( ( 1 + 1 ) Β· ( π + π§ ) ) = ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π§ ) ) ) ) |
26 |
|
oveq2 |
β’ ( π§ = π β ( π + π§ ) = ( π + π ) ) |
27 |
26
|
oveq2d |
β’ ( π§ = π β ( ( 1 + 1 ) Β· ( π + π§ ) ) = ( ( 1 + 1 ) Β· ( π + π ) ) ) |
28 |
|
oveq2 |
β’ ( π§ = π β ( ( 1 + 1 ) Β· π§ ) = ( ( 1 + 1 ) Β· π ) ) |
29 |
28
|
oveq2d |
β’ ( π§ = π β ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π§ ) ) = ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π ) ) ) |
30 |
27 29
|
eqeq12d |
β’ ( π§ = π β ( ( ( 1 + 1 ) Β· ( π + π§ ) ) = ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π§ ) ) β ( ( 1 + 1 ) Β· ( π + π ) ) = ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π ) ) ) ) |
31 |
20 25 30
|
rspc3v |
β’ ( ( ( 1 + 1 ) β π΅ β§ π β π΅ β§ π β π΅ ) β ( β π₯ β π΅ β π¦ β π΅ β π§ β π΅ ( π₯ Β· ( π¦ + π§ ) ) = ( ( π₯ Β· π¦ ) + ( π₯ Β· π§ ) ) β ( ( 1 + 1 ) Β· ( π + π ) ) = ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π ) ) ) ) |
32 |
15 6 31
|
sylc |
β’ ( π β ( ( 1 + 1 ) Β· ( π + π ) ) = ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π ) ) ) |
33 |
|
oveq1 |
β’ ( π₯ = π β ( π₯ + π¦ ) = ( π + π¦ ) ) |
34 |
33
|
eleq1d |
β’ ( π₯ = π β ( ( π₯ + π¦ ) β π΅ β ( π + π¦ ) β π΅ ) ) |
35 |
|
oveq2 |
β’ ( π¦ = π β ( π + π¦ ) = ( π + π ) ) |
36 |
35
|
eleq1d |
β’ ( π¦ = π β ( ( π + π¦ ) β π΅ β ( π + π ) β π΅ ) ) |
37 |
34 36
|
rspc2va |
β’ ( ( ( π β π΅ β§ π β π΅ ) β§ β π₯ β π΅ β π¦ β π΅ ( π₯ + π¦ ) β π΅ ) β ( π + π ) β π΅ ) |
38 |
4 7 5 37
|
syl21anc |
β’ ( π β ( π + π ) β π΅ ) |
39 |
2 2 38
|
3jca |
β’ ( π β ( 1 β π΅ β§ 1 β π΅ β§ ( π + π ) β π΅ ) ) |
40 |
9
|
oveq1d |
β’ ( π₯ = 1 β ( ( π₯ + π¦ ) Β· π§ ) = ( ( 1 + π¦ ) Β· π§ ) ) |
41 |
|
oveq1 |
β’ ( π₯ = 1 β ( π₯ Β· π§ ) = ( 1 Β· π§ ) ) |
42 |
41
|
oveq1d |
β’ ( π₯ = 1 β ( ( π₯ Β· π§ ) + ( π¦ Β· π§ ) ) = ( ( 1 Β· π§ ) + ( π¦ Β· π§ ) ) ) |
43 |
40 42
|
eqeq12d |
β’ ( π₯ = 1 β ( ( ( π₯ + π¦ ) Β· π§ ) = ( ( π₯ Β· π§ ) + ( π¦ Β· π§ ) ) β ( ( 1 + π¦ ) Β· π§ ) = ( ( 1 Β· π§ ) + ( π¦ Β· π§ ) ) ) ) |
44 |
11
|
oveq1d |
β’ ( π¦ = 1 β ( ( 1 + π¦ ) Β· π§ ) = ( ( 1 + 1 ) Β· π§ ) ) |
45 |
|
oveq1 |
β’ ( π¦ = 1 β ( π¦ Β· π§ ) = ( 1 Β· π§ ) ) |
46 |
45
|
oveq2d |
β’ ( π¦ = 1 β ( ( 1 Β· π§ ) + ( π¦ Β· π§ ) ) = ( ( 1 Β· π§ ) + ( 1 Β· π§ ) ) ) |
47 |
44 46
|
eqeq12d |
β’ ( π¦ = 1 β ( ( ( 1 + π¦ ) Β· π§ ) = ( ( 1 Β· π§ ) + ( π¦ Β· π§ ) ) β ( ( 1 + 1 ) Β· π§ ) = ( ( 1 Β· π§ ) + ( 1 Β· π§ ) ) ) ) |
48 |
|
oveq2 |
β’ ( π§ = ( π + π ) β ( ( 1 + 1 ) Β· π§ ) = ( ( 1 + 1 ) Β· ( π + π ) ) ) |
49 |
|
oveq2 |
β’ ( π§ = ( π + π ) β ( 1 Β· π§ ) = ( 1 Β· ( π + π ) ) ) |
50 |
49 49
|
oveq12d |
β’ ( π§ = ( π + π ) β ( ( 1 Β· π§ ) + ( 1 Β· π§ ) ) = ( ( 1 Β· ( π + π ) ) + ( 1 Β· ( π + π ) ) ) ) |
51 |
48 50
|
eqeq12d |
β’ ( π§ = ( π + π ) β ( ( ( 1 + 1 ) Β· π§ ) = ( ( 1 Β· π§ ) + ( 1 Β· π§ ) ) β ( ( 1 + 1 ) Β· ( π + π ) ) = ( ( 1 Β· ( π + π ) ) + ( 1 Β· ( π + π ) ) ) ) ) |
52 |
43 47 51
|
rspc3v |
β’ ( ( 1 β π΅ β§ 1 β π΅ β§ ( π + π ) β π΅ ) β ( β π₯ β π΅ β π¦ β π΅ β π§ β π΅ ( ( π₯ + π¦ ) Β· π§ ) = ( ( π₯ Β· π§ ) + ( π¦ Β· π§ ) ) β ( ( 1 + 1 ) Β· ( π + π ) ) = ( ( 1 Β· ( π + π ) ) + ( 1 Β· ( π + π ) ) ) ) ) |
53 |
39 1 52
|
sylc |
β’ ( π β ( ( 1 + 1 ) Β· ( π + π ) ) = ( ( 1 Β· ( π + π ) ) + ( 1 Β· ( π + π ) ) ) ) |
54 |
32 53
|
eqtr3d |
β’ ( π β ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π ) ) = ( ( 1 Β· ( π + π ) ) + ( 1 Β· ( π + π ) ) ) ) |
55 |
1 2 3 4
|
o2timesd |
β’ ( π β ( π + π ) = ( ( 1 + 1 ) Β· π ) ) |
56 |
55
|
eqcomd |
β’ ( π β ( ( 1 + 1 ) Β· π ) = ( π + π ) ) |
57 |
1 2 3 7
|
o2timesd |
β’ ( π β ( π + π ) = ( ( 1 + 1 ) Β· π ) ) |
58 |
57
|
eqcomd |
β’ ( π β ( ( 1 + 1 ) Β· π ) = ( π + π ) ) |
59 |
56 58
|
oveq12d |
β’ ( π β ( ( ( 1 + 1 ) Β· π ) + ( ( 1 + 1 ) Β· π ) ) = ( ( π + π ) + ( π + π ) ) ) |
60 |
|
oveq2 |
β’ ( π₯ = ( π + π ) β ( 1 Β· π₯ ) = ( 1 Β· ( π + π ) ) ) |
61 |
|
id |
β’ ( π₯ = ( π + π ) β π₯ = ( π + π ) ) |
62 |
60 61
|
eqeq12d |
β’ ( π₯ = ( π + π ) β ( ( 1 Β· π₯ ) = π₯ β ( 1 Β· ( π + π ) ) = ( π + π ) ) ) |
63 |
62
|
rspcva |
β’ ( ( ( π + π ) β π΅ β§ β π₯ β π΅ ( 1 Β· π₯ ) = π₯ ) β ( 1 Β· ( π + π ) ) = ( π + π ) ) |
64 |
38 3 63
|
syl2anc |
β’ ( π β ( 1 Β· ( π + π ) ) = ( π + π ) ) |
65 |
64 64
|
oveq12d |
β’ ( π β ( ( 1 Β· ( π + π ) ) + ( 1 Β· ( π + π ) ) ) = ( ( π + π ) + ( π + π ) ) ) |
66 |
54 59 65
|
3eqtr3d |
β’ ( π β ( ( π + π ) + ( π + π ) ) = ( ( π + π ) + ( π + π ) ) ) |