Step |
Hyp |
Ref |
Expression |
1 |
|
o2timesd.e |
β’ ( π β β π₯ β π΅ β π¦ β π΅ β π§ β π΅ ( ( π₯ + π¦ ) Β· π§ ) = ( ( π₯ Β· π§ ) + ( π¦ Β· π§ ) ) ) |
2 |
|
o2timesd.u |
β’ ( π β 1 β π΅ ) |
3 |
|
o2timesd.i |
β’ ( π β β π₯ β π΅ ( 1 Β· π₯ ) = π₯ ) |
4 |
|
o2timesd.x |
β’ ( π β π β π΅ ) |
5 |
|
oveq2 |
β’ ( π₯ = π β ( 1 Β· π₯ ) = ( 1 Β· π ) ) |
6 |
|
id |
β’ ( π₯ = π β π₯ = π ) |
7 |
5 6
|
eqeq12d |
β’ ( π₯ = π β ( ( 1 Β· π₯ ) = π₯ β ( 1 Β· π ) = π ) ) |
8 |
7
|
rspcva |
β’ ( ( π β π΅ β§ β π₯ β π΅ ( 1 Β· π₯ ) = π₯ ) β ( 1 Β· π ) = π ) |
9 |
8
|
eqcomd |
β’ ( ( π β π΅ β§ β π₯ β π΅ ( 1 Β· π₯ ) = π₯ ) β π = ( 1 Β· π ) ) |
10 |
4 3 9
|
syl2anc |
β’ ( π β π = ( 1 Β· π ) ) |
11 |
10 10
|
oveq12d |
β’ ( π β ( π + π ) = ( ( 1 Β· π ) + ( 1 Β· π ) ) ) |
12 |
2 2 4
|
3jca |
β’ ( π β ( 1 β π΅ β§ 1 β π΅ β§ π β π΅ ) ) |
13 |
|
oveq1 |
β’ ( π₯ = 1 β ( π₯ + π¦ ) = ( 1 + π¦ ) ) |
14 |
13
|
oveq1d |
β’ ( π₯ = 1 β ( ( π₯ + π¦ ) Β· π§ ) = ( ( 1 + π¦ ) Β· π§ ) ) |
15 |
|
oveq1 |
β’ ( π₯ = 1 β ( π₯ Β· π§ ) = ( 1 Β· π§ ) ) |
16 |
15
|
oveq1d |
β’ ( π₯ = 1 β ( ( π₯ Β· π§ ) + ( π¦ Β· π§ ) ) = ( ( 1 Β· π§ ) + ( π¦ Β· π§ ) ) ) |
17 |
14 16
|
eqeq12d |
β’ ( π₯ = 1 β ( ( ( π₯ + π¦ ) Β· π§ ) = ( ( π₯ Β· π§ ) + ( π¦ Β· π§ ) ) β ( ( 1 + π¦ ) Β· π§ ) = ( ( 1 Β· π§ ) + ( π¦ Β· π§ ) ) ) ) |
18 |
|
oveq2 |
β’ ( π¦ = 1 β ( 1 + π¦ ) = ( 1 + 1 ) ) |
19 |
18
|
oveq1d |
β’ ( π¦ = 1 β ( ( 1 + π¦ ) Β· π§ ) = ( ( 1 + 1 ) Β· π§ ) ) |
20 |
|
oveq1 |
β’ ( π¦ = 1 β ( π¦ Β· π§ ) = ( 1 Β· π§ ) ) |
21 |
20
|
oveq2d |
β’ ( π¦ = 1 β ( ( 1 Β· π§ ) + ( π¦ Β· π§ ) ) = ( ( 1 Β· π§ ) + ( 1 Β· π§ ) ) ) |
22 |
19 21
|
eqeq12d |
β’ ( π¦ = 1 β ( ( ( 1 + π¦ ) Β· π§ ) = ( ( 1 Β· π§ ) + ( π¦ Β· π§ ) ) β ( ( 1 + 1 ) Β· π§ ) = ( ( 1 Β· π§ ) + ( 1 Β· π§ ) ) ) ) |
23 |
|
oveq2 |
β’ ( π§ = π β ( ( 1 + 1 ) Β· π§ ) = ( ( 1 + 1 ) Β· π ) ) |
24 |
|
oveq2 |
β’ ( π§ = π β ( 1 Β· π§ ) = ( 1 Β· π ) ) |
25 |
24 24
|
oveq12d |
β’ ( π§ = π β ( ( 1 Β· π§ ) + ( 1 Β· π§ ) ) = ( ( 1 Β· π ) + ( 1 Β· π ) ) ) |
26 |
23 25
|
eqeq12d |
β’ ( π§ = π β ( ( ( 1 + 1 ) Β· π§ ) = ( ( 1 Β· π§ ) + ( 1 Β· π§ ) ) β ( ( 1 + 1 ) Β· π ) = ( ( 1 Β· π ) + ( 1 Β· π ) ) ) ) |
27 |
17 22 26
|
rspc3v |
β’ ( ( 1 β π΅ β§ 1 β π΅ β§ π β π΅ ) β ( β π₯ β π΅ β π¦ β π΅ β π§ β π΅ ( ( π₯ + π¦ ) Β· π§ ) = ( ( π₯ Β· π§ ) + ( π¦ Β· π§ ) ) β ( ( 1 + 1 ) Β· π ) = ( ( 1 Β· π ) + ( 1 Β· π ) ) ) ) |
28 |
12 1 27
|
sylc |
β’ ( π β ( ( 1 + 1 ) Β· π ) = ( ( 1 Β· π ) + ( 1 Β· π ) ) ) |
29 |
11 28
|
eqtr4d |
β’ ( π β ( π + π ) = ( ( 1 + 1 ) Β· π ) ) |