Metamath Proof Explorer


Theorem o2timesd

Description: An element of a ring-like structure plus itself is two times the element. "Two" in such a structure is the sum of the unity element with itself. This (formerly) part of the proof for ringcom depends on the (right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by GΓ©rard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025)

Ref Expression
Hypotheses o2timesd.e ⊒ ( πœ‘ β†’ βˆ€ π‘₯ ∈ 𝐡 βˆ€ 𝑦 ∈ 𝐡 βˆ€ 𝑧 ∈ 𝐡 ( ( π‘₯ + 𝑦 ) Β· 𝑧 ) = ( ( π‘₯ Β· 𝑧 ) + ( 𝑦 Β· 𝑧 ) ) )
o2timesd.u ⊒ ( πœ‘ β†’ 1 ∈ 𝐡 )
o2timesd.i ⊒ ( πœ‘ β†’ βˆ€ π‘₯ ∈ 𝐡 ( 1 Β· π‘₯ ) = π‘₯ )
o2timesd.x ⊒ ( πœ‘ β†’ 𝑋 ∈ 𝐡 )
Assertion o2timesd ( πœ‘ β†’ ( 𝑋 + 𝑋 ) = ( ( 1 + 1 ) Β· 𝑋 ) )

Proof

Step Hyp Ref Expression
1 o2timesd.e ⊒ ( πœ‘ β†’ βˆ€ π‘₯ ∈ 𝐡 βˆ€ 𝑦 ∈ 𝐡 βˆ€ 𝑧 ∈ 𝐡 ( ( π‘₯ + 𝑦 ) Β· 𝑧 ) = ( ( π‘₯ Β· 𝑧 ) + ( 𝑦 Β· 𝑧 ) ) )
2 o2timesd.u ⊒ ( πœ‘ β†’ 1 ∈ 𝐡 )
3 o2timesd.i ⊒ ( πœ‘ β†’ βˆ€ π‘₯ ∈ 𝐡 ( 1 Β· π‘₯ ) = π‘₯ )
4 o2timesd.x ⊒ ( πœ‘ β†’ 𝑋 ∈ 𝐡 )
5 oveq2 ⊒ ( π‘₯ = 𝑋 β†’ ( 1 Β· π‘₯ ) = ( 1 Β· 𝑋 ) )
6 id ⊒ ( π‘₯ = 𝑋 β†’ π‘₯ = 𝑋 )
7 5 6 eqeq12d ⊒ ( π‘₯ = 𝑋 β†’ ( ( 1 Β· π‘₯ ) = π‘₯ ↔ ( 1 Β· 𝑋 ) = 𝑋 ) )
8 7 rspcva ⊒ ( ( 𝑋 ∈ 𝐡 ∧ βˆ€ π‘₯ ∈ 𝐡 ( 1 Β· π‘₯ ) = π‘₯ ) β†’ ( 1 Β· 𝑋 ) = 𝑋 )
9 8 eqcomd ⊒ ( ( 𝑋 ∈ 𝐡 ∧ βˆ€ π‘₯ ∈ 𝐡 ( 1 Β· π‘₯ ) = π‘₯ ) β†’ 𝑋 = ( 1 Β· 𝑋 ) )
10 4 3 9 syl2anc ⊒ ( πœ‘ β†’ 𝑋 = ( 1 Β· 𝑋 ) )
11 10 10 oveq12d ⊒ ( πœ‘ β†’ ( 𝑋 + 𝑋 ) = ( ( 1 Β· 𝑋 ) + ( 1 Β· 𝑋 ) ) )
12 2 2 4 3jca ⊒ ( πœ‘ β†’ ( 1 ∈ 𝐡 ∧ 1 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡 ) )
13 oveq1 ⊒ ( π‘₯ = 1 β†’ ( π‘₯ + 𝑦 ) = ( 1 + 𝑦 ) )
14 13 oveq1d ⊒ ( π‘₯ = 1 β†’ ( ( π‘₯ + 𝑦 ) Β· 𝑧 ) = ( ( 1 + 𝑦 ) Β· 𝑧 ) )
15 oveq1 ⊒ ( π‘₯ = 1 β†’ ( π‘₯ Β· 𝑧 ) = ( 1 Β· 𝑧 ) )
16 15 oveq1d ⊒ ( π‘₯ = 1 β†’ ( ( π‘₯ Β· 𝑧 ) + ( 𝑦 Β· 𝑧 ) ) = ( ( 1 Β· 𝑧 ) + ( 𝑦 Β· 𝑧 ) ) )
17 14 16 eqeq12d ⊒ ( π‘₯ = 1 β†’ ( ( ( π‘₯ + 𝑦 ) Β· 𝑧 ) = ( ( π‘₯ Β· 𝑧 ) + ( 𝑦 Β· 𝑧 ) ) ↔ ( ( 1 + 𝑦 ) Β· 𝑧 ) = ( ( 1 Β· 𝑧 ) + ( 𝑦 Β· 𝑧 ) ) ) )
18 oveq2 ⊒ ( 𝑦 = 1 β†’ ( 1 + 𝑦 ) = ( 1 + 1 ) )
19 18 oveq1d ⊒ ( 𝑦 = 1 β†’ ( ( 1 + 𝑦 ) Β· 𝑧 ) = ( ( 1 + 1 ) Β· 𝑧 ) )
20 oveq1 ⊒ ( 𝑦 = 1 β†’ ( 𝑦 Β· 𝑧 ) = ( 1 Β· 𝑧 ) )
21 20 oveq2d ⊒ ( 𝑦 = 1 β†’ ( ( 1 Β· 𝑧 ) + ( 𝑦 Β· 𝑧 ) ) = ( ( 1 Β· 𝑧 ) + ( 1 Β· 𝑧 ) ) )
22 19 21 eqeq12d ⊒ ( 𝑦 = 1 β†’ ( ( ( 1 + 𝑦 ) Β· 𝑧 ) = ( ( 1 Β· 𝑧 ) + ( 𝑦 Β· 𝑧 ) ) ↔ ( ( 1 + 1 ) Β· 𝑧 ) = ( ( 1 Β· 𝑧 ) + ( 1 Β· 𝑧 ) ) ) )
23 oveq2 ⊒ ( 𝑧 = 𝑋 β†’ ( ( 1 + 1 ) Β· 𝑧 ) = ( ( 1 + 1 ) Β· 𝑋 ) )
24 oveq2 ⊒ ( 𝑧 = 𝑋 β†’ ( 1 Β· 𝑧 ) = ( 1 Β· 𝑋 ) )
25 24 24 oveq12d ⊒ ( 𝑧 = 𝑋 β†’ ( ( 1 Β· 𝑧 ) + ( 1 Β· 𝑧 ) ) = ( ( 1 Β· 𝑋 ) + ( 1 Β· 𝑋 ) ) )
26 23 25 eqeq12d ⊒ ( 𝑧 = 𝑋 β†’ ( ( ( 1 + 1 ) Β· 𝑧 ) = ( ( 1 Β· 𝑧 ) + ( 1 Β· 𝑧 ) ) ↔ ( ( 1 + 1 ) Β· 𝑋 ) = ( ( 1 Β· 𝑋 ) + ( 1 Β· 𝑋 ) ) ) )
27 17 22 26 rspc3v ⊒ ( ( 1 ∈ 𝐡 ∧ 1 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡 ) β†’ ( βˆ€ π‘₯ ∈ 𝐡 βˆ€ 𝑦 ∈ 𝐡 βˆ€ 𝑧 ∈ 𝐡 ( ( π‘₯ + 𝑦 ) Β· 𝑧 ) = ( ( π‘₯ Β· 𝑧 ) + ( 𝑦 Β· 𝑧 ) ) β†’ ( ( 1 + 1 ) Β· 𝑋 ) = ( ( 1 Β· 𝑋 ) + ( 1 Β· 𝑋 ) ) ) )
28 12 1 27 sylc ⊒ ( πœ‘ β†’ ( ( 1 + 1 ) Β· 𝑋 ) = ( ( 1 Β· 𝑋 ) + ( 1 Β· 𝑋 ) ) )
29 11 28 eqtr4d ⊒ ( πœ‘ β†’ ( 𝑋 + 𝑋 ) = ( ( 1 + 1 ) Β· 𝑋 ) )