Step |
Hyp |
Ref |
Expression |
1 |
|
o2timesd.e |
|- ( ph -> A. x e. B A. y e. B A. z e. B ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
2 |
|
o2timesd.u |
|- ( ph -> .1. e. B ) |
3 |
|
o2timesd.i |
|- ( ph -> A. x e. B ( .1. .x. x ) = x ) |
4 |
|
o2timesd.x |
|- ( ph -> X e. B ) |
5 |
|
oveq2 |
|- ( x = X -> ( .1. .x. x ) = ( .1. .x. X ) ) |
6 |
|
id |
|- ( x = X -> x = X ) |
7 |
5 6
|
eqeq12d |
|- ( x = X -> ( ( .1. .x. x ) = x <-> ( .1. .x. X ) = X ) ) |
8 |
7
|
rspcva |
|- ( ( X e. B /\ A. x e. B ( .1. .x. x ) = x ) -> ( .1. .x. X ) = X ) |
9 |
8
|
eqcomd |
|- ( ( X e. B /\ A. x e. B ( .1. .x. x ) = x ) -> X = ( .1. .x. X ) ) |
10 |
4 3 9
|
syl2anc |
|- ( ph -> X = ( .1. .x. X ) ) |
11 |
10 10
|
oveq12d |
|- ( ph -> ( X .+ X ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) |
12 |
2 2 4
|
3jca |
|- ( ph -> ( .1. e. B /\ .1. e. B /\ X e. B ) ) |
13 |
|
oveq1 |
|- ( x = .1. -> ( x .+ y ) = ( .1. .+ y ) ) |
14 |
13
|
oveq1d |
|- ( x = .1. -> ( ( x .+ y ) .x. z ) = ( ( .1. .+ y ) .x. z ) ) |
15 |
|
oveq1 |
|- ( x = .1. -> ( x .x. z ) = ( .1. .x. z ) ) |
16 |
15
|
oveq1d |
|- ( x = .1. -> ( ( x .x. z ) .+ ( y .x. z ) ) = ( ( .1. .x. z ) .+ ( y .x. z ) ) ) |
17 |
14 16
|
eqeq12d |
|- ( x = .1. -> ( ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) <-> ( ( .1. .+ y ) .x. z ) = ( ( .1. .x. z ) .+ ( y .x. z ) ) ) ) |
18 |
|
oveq2 |
|- ( y = .1. -> ( .1. .+ y ) = ( .1. .+ .1. ) ) |
19 |
18
|
oveq1d |
|- ( y = .1. -> ( ( .1. .+ y ) .x. z ) = ( ( .1. .+ .1. ) .x. z ) ) |
20 |
|
oveq1 |
|- ( y = .1. -> ( y .x. z ) = ( .1. .x. z ) ) |
21 |
20
|
oveq2d |
|- ( y = .1. -> ( ( .1. .x. z ) .+ ( y .x. z ) ) = ( ( .1. .x. z ) .+ ( .1. .x. z ) ) ) |
22 |
19 21
|
eqeq12d |
|- ( y = .1. -> ( ( ( .1. .+ y ) .x. z ) = ( ( .1. .x. z ) .+ ( y .x. z ) ) <-> ( ( .1. .+ .1. ) .x. z ) = ( ( .1. .x. z ) .+ ( .1. .x. z ) ) ) ) |
23 |
|
oveq2 |
|- ( z = X -> ( ( .1. .+ .1. ) .x. z ) = ( ( .1. .+ .1. ) .x. X ) ) |
24 |
|
oveq2 |
|- ( z = X -> ( .1. .x. z ) = ( .1. .x. X ) ) |
25 |
24 24
|
oveq12d |
|- ( z = X -> ( ( .1. .x. z ) .+ ( .1. .x. z ) ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) |
26 |
23 25
|
eqeq12d |
|- ( z = X -> ( ( ( .1. .+ .1. ) .x. z ) = ( ( .1. .x. z ) .+ ( .1. .x. z ) ) <-> ( ( .1. .+ .1. ) .x. X ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) ) |
27 |
17 22 26
|
rspc3v |
|- ( ( .1. e. B /\ .1. e. B /\ X e. B ) -> ( A. x e. B A. y e. B A. z e. B ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) -> ( ( .1. .+ .1. ) .x. X ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) ) |
28 |
12 1 27
|
sylc |
|- ( ph -> ( ( .1. .+ .1. ) .x. X ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) |
29 |
11 28
|
eqtr4d |
|- ( ph -> ( X .+ X ) = ( ( .1. .+ .1. ) .x. X ) ) |