Metamath Proof Explorer


Theorem srgo2times

Description: A semiring element plus itself is two times the element. "Two" in an arbitrary (unital) semiring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021) Variant of o2timesd for semirings. (Revised by AV, 1-Feb-2025)

Ref Expression
Hypotheses srgo2times.b B=BaseR
srgo2times.p +˙=+R
srgo2times.t ·˙=R
srgo2times.u 1˙=1R
Assertion srgo2times RSRingABA+˙A=1˙+˙1˙·˙A

Proof

Step Hyp Ref Expression
1 srgo2times.b B=BaseR
2 srgo2times.p +˙=+R
3 srgo2times.t ·˙=R
4 srgo2times.u 1˙=1R
5 1 2 3 srgdir RSRingxByBzBx+˙y·˙z=x·˙z+˙y·˙z
6 5 ralrimivvva RSRingxByBzBx+˙y·˙z=x·˙z+˙y·˙z
7 6 adantr RSRingABxByBzBx+˙y·˙z=x·˙z+˙y·˙z
8 1 4 srgidcl RSRing1˙B
9 8 adantr RSRingAB1˙B
10 1 3 4 srglidm RSRingxB1˙·˙x=x
11 10 ralrimiva RSRingxB1˙·˙x=x
12 11 adantr RSRingABxB1˙·˙x=x
13 simpr RSRingABAB
14 7 9 12 13 o2timesd RSRingABA+˙A=1˙+˙1˙·˙A