Metamath Proof Explorer


Theorem ringcbasALTV

Description: Set of objects of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcbasALTV.c C = RingCatALTV U
ringcbasALTV.b B = Base C
ringcbasALTV.u φ U V
Assertion ringcbasALTV φ B = U Ring

Proof

Step Hyp Ref Expression
1 ringcbasALTV.c C = RingCatALTV U
2 ringcbasALTV.b B = Base C
3 ringcbasALTV.u φ U V
4 eqidd φ U Ring = U Ring
5 eqidd φ x U Ring , y U Ring x RingHom y = x U Ring , y U Ring x RingHom y
6 eqidd φ v U Ring × U Ring , z U Ring f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g = v U Ring × U Ring , z U Ring f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
7 1 3 4 5 6 ringcvalALTV φ C = Base ndx U Ring Hom ndx x U Ring , y U Ring x RingHom y comp ndx v U Ring × U Ring , z U Ring f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
8 catstr Base ndx U Ring Hom ndx x U Ring , y U Ring x RingHom y comp ndx v U Ring × U Ring , z U Ring f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g Struct 1 15
9 baseid Base = Slot Base ndx
10 snsstp1 Base ndx U Ring Base ndx U Ring Hom ndx x U Ring , y U Ring x RingHom y comp ndx v U Ring × U Ring , z U Ring f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
11 inex1g U V U Ring V
12 3 11 syl φ U Ring V
13 7 8 9 10 12 2 strfv3 φ B = U Ring