Metamath Proof Explorer


Theorem ringprop

Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013)

Ref Expression
Hypotheses ringprop.b BaseK=BaseL
ringprop.p +K=+L
ringprop.m K=L
Assertion ringprop KRingLRing

Proof

Step Hyp Ref Expression
1 ringprop.b BaseK=BaseL
2 ringprop.p +K=+L
3 ringprop.m K=L
4 eqidd BaseK=BaseK
5 1 a1i BaseK=BaseL
6 2 oveqi x+Ky=x+Ly
7 6 a1i xBaseKyBaseKx+Ky=x+Ly
8 3 oveqi xKy=xLy
9 8 a1i xBaseKyBaseKxKy=xLy
10 4 5 7 9 ringpropd KRingLRing
11 10 mptru KRingLRing