Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringprop.b | |
|
ringprop.p | |
||
ringprop.m | |
||
Assertion | ringprop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringprop.b | |
|
2 | ringprop.p | |
|
3 | ringprop.m | |
|
4 | eqidd | |
|
5 | 1 | a1i | |
6 | 2 | oveqi | |
7 | 6 | a1i | |
8 | 3 | oveqi | |
9 | 8 | a1i | |
10 | 4 5 7 9 | ringpropd | |
11 | 10 | mptru | |