Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringprop.b | ||
| ringprop.p | |||
| ringprop.m | |||
| Assertion | ringprop | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringprop.b | ||
| 2 | ringprop.p | ||
| 3 | ringprop.m | ||
| 4 | eqidd | ||
| 5 | 1 | a1i | |
| 6 | 2 | oveqi | |
| 7 | 6 | a1i | |
| 8 | 3 | oveqi | |
| 9 | 8 | a1i | |
| 10 | 4 5 7 9 | ringpropd | |
| 11 | 10 | mptru |