Metamath Proof Explorer


Theorem ringprop

Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013)

Ref Expression
Hypotheses ringprop.b Base K = Base L
ringprop.p + K = + L
ringprop.m K = L
Assertion ringprop K Ring L Ring

Proof

Step Hyp Ref Expression
1 ringprop.b Base K = Base L
2 ringprop.p + K = + L
3 ringprop.m K = L
4 eqidd Base K = Base K
5 1 a1i Base K = Base L
6 2 oveqi x + K y = x + L y
7 6 a1i x Base K y Base K x + K y = x + L y
8 3 oveqi x K y = x L y
9 8 a1i x Base K y Base K x K y = x L y
10 4 5 7 9 ringpropd K Ring L Ring
11 10 mptru K Ring L Ring