Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Restricted iota (description binder) riota2f  
				
		 
		
			
		 
		Description:   This theorem shows a condition that allows to represent a descriptor
       with a class expression B  .  (Contributed by NM , 23-Aug-2011) 
       (Revised by Mario Carneiro , 15-Oct-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						riota2f.1   ⊢    Ⅎ   _  x  B       
					 
					
						riota2f.2   ⊢   Ⅎ  x   ψ        
					 
					
						riota2f.3    ⊢   x  =  B    →    φ   ↔   ψ         
					 
				
					Assertion 
					riota2f    ⊢    B  ∈  A    ∧   ∃!  x  ∈  A   φ      →    ψ   ↔    ι  x  ∈  A  |   φ     =  B          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							riota2f.1  ⊢    Ⅎ   _  x  B       
						
							2 
								
							 
							riota2f.2  ⊢   Ⅎ  x   ψ        
						
							3 
								
							 
							riota2f.3   ⊢   x  =  B    →    φ   ↔   ψ         
						
							4 
								1 
							 
							nfel1  ⊢   Ⅎ  x   B  ∈  A         
						
							5 
								1 
							 
							a1i   ⊢   B  ∈  A    →    Ⅎ   _  x  B         
						
							6 
								2 
							 
							a1i   ⊢   B  ∈  A    →   Ⅎ  x   ψ          
						
							7 
								
							 
							id   ⊢   B  ∈  A    →   B  ∈  A         
						
							8 
								3 
							 
							adantl   ⊢    B  ∈  A    ∧   x  =  B     →    φ   ↔   ψ         
						
							9 
								4  5  6  7  8 
							 
							riota2df   ⊢    B  ∈  A    ∧   ∃!  x  ∈  A   φ      →    ψ   ↔    ι  x  ∈  A  |   φ     =  B