Metamath Proof Explorer


Theorem riotabiia

Description: Equivalent wff's yield equal restricted iotas (inference form). ( rabbiia analog.) (Contributed by NM, 16-Jan-2012)

Ref Expression
Hypothesis riotabiia.1 xAφψ
Assertion riotabiia ιxA|φ=ιxA|ψ

Proof

Step Hyp Ref Expression
1 riotabiia.1 xAφψ
2 eqid V=V
3 1 adantl V=VxAφψ
4 3 riotabidva V=VιxA|φ=ιxA|ψ
5 2 4 ax-mp ιxA|φ=ιxA|ψ