Metamath Proof Explorer


Theorem riotaeqbii

Description: Equivalent wff's and equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses riotaeqbii.1 A = B
riotaeqbii.2 φ ψ
Assertion riotaeqbii ι x A | φ = ι x B | ψ

Proof

Step Hyp Ref Expression
1 riotaeqbii.1 A = B
2 riotaeqbii.2 φ ψ
3 1 eleq2i x A x B
4 3 2 anbi12i x A φ x B ψ
5 4 iotabii ι x | x A φ = ι x | x B ψ
6 df-riota ι x A | φ = ι x | x A φ
7 df-riota ι x B | ψ = ι x | x B ψ
8 5 6 7 3eqtr4i ι x A | φ = ι x B | ψ