Metamath Proof Explorer


Theorem riotaprop

Description: Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013)

Ref Expression
Hypotheses riotaprop.0 xψ
riotaprop.1 B=ιxA|φ
riotaprop.2 x=Bφψ
Assertion riotaprop ∃!xAφBAψ

Proof

Step Hyp Ref Expression
1 riotaprop.0 xψ
2 riotaprop.1 B=ιxA|φ
3 riotaprop.2 x=Bφψ
4 riotacl ∃!xAφιxA|φA
5 2 4 eqeltrid ∃!xAφBA
6 2 eqcomi ιxA|φ=B
7 nfriota1 _xιxA|φ
8 2 7 nfcxfr _xB
9 8 1 3 riota2f BA∃!xAφψιxA|φ=B
10 6 9 mpbiri BA∃!xAφψ
11 5 10 mpancom ∃!xAφψ
12 5 11 jca ∃!xAφBAψ