Metamath Proof Explorer


Theorem riotassuni

Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotassuni ιxA|φ𝒫AA

Proof

Step Hyp Ref Expression
1 riotauni ∃!xAφιxA|φ=xA|φ
2 ssrab2 xA|φA
3 2 unissi xA|φA
4 ssun2 A𝒫AA
5 3 4 sstri xA|φ𝒫AA
6 1 5 eqsstrdi ∃!xAφιxA|φ𝒫AA
7 riotaund ¬∃!xAφιxA|φ=
8 0ss 𝒫AA
9 7 8 eqsstrdi ¬∃!xAφιxA|φ𝒫AA
10 6 9 pm2.61i ιxA|φ𝒫AA