Metamath Proof Explorer


Theorem riotasv2s

Description: The value of description binder D for a single-valued class expression C ( y ) (as in e.g. reusv2 ) in the form of a substitution instance. Special case of riota2f . (Contributed by NM, 3-Mar-2013) (Proof shortened by Mario Carneiro, 6-Dec-2016)

Ref Expression
Hypothesis riotasv2s.2 D=ιxA|yBφx=C
Assertion riotasv2s AVDAEB[˙E/y]˙φD=E/yC

Proof

Step Hyp Ref Expression
1 riotasv2s.2 D=ιxA|yBφx=C
2 3simpc AVDAEB[˙E/y]˙φDAEB[˙E/y]˙φ
3 simp1 AVDAEB[˙E/y]˙φAV
4 nfra1 yyBφx=C
5 nfcv _yA
6 4 5 nfriota _yιxA|yBφx=C
7 1 6 nfcxfr _yD
8 7 nfel1 yDA
9 nfv yEB
10 nfsbc1v y[˙E/y]˙φ
11 9 10 nfan yEB[˙E/y]˙φ
12 8 11 nfan yDAEB[˙E/y]˙φ
13 nfcsb1v _yE/yC
14 13 a1i DAEB[˙E/y]˙φ_yE/yC
15 10 a1i DAEB[˙E/y]˙φy[˙E/y]˙φ
16 1 a1i DAEB[˙E/y]˙φD=ιxA|yBφx=C
17 sbceq1a y=Eφ[˙E/y]˙φ
18 17 adantl DAEB[˙E/y]˙φy=Eφ[˙E/y]˙φ
19 csbeq1a y=EC=E/yC
20 19 adantl DAEB[˙E/y]˙φy=EC=E/yC
21 simpl DAEB[˙E/y]˙φDA
22 simprl DAEB[˙E/y]˙φEB
23 simprr DAEB[˙E/y]˙φ[˙E/y]˙φ
24 12 14 15 16 18 20 21 22 23 riotasv2d DAEB[˙E/y]˙φAVD=E/yC
25 2 3 24 syl2anc AVDAEB[˙E/y]˙φD=E/yC