Metamath Proof Explorer


Theorem risefacval

Description: The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion risefacval AN0AN=k=0N1A+k

Proof

Step Hyp Ref Expression
1 oveq1 x=Ax+k=A+k
2 1 prodeq2sdv x=Ak=0n1x+k=k=0n1A+k
3 oveq1 n=Nn1=N1
4 3 oveq2d n=N0n1=0N1
5 4 prodeq1d n=Nk=0n1A+k=k=0N1A+k
6 df-risefac RiseFac=x,n0k=0n1x+k
7 prodex k=0N1A+kV
8 2 5 6 7 ovmpo AN0AN=k=0N1A+k