Metamath Proof Explorer


Theorem rmo2

Description: Alternate definition of restricted "at most one". Note that E* x e. A ph is not equivalent to E. y e. A A. x e. A ( ph -> x = y ) (in analogy to reu6 ); to see this, let A be the empty set. However, one direction of this pattern holds; see rmo2i . (Contributed by NM, 17-Jun-2017)

Ref Expression
Hypothesis rmo2.1 yφ
Assertion rmo2 *xAφyxAφx=y

Proof

Step Hyp Ref Expression
1 rmo2.1 yφ
2 df-rmo *xAφ*xxAφ
3 nfv yxA
4 3 1 nfan yxAφ
5 4 mof *xxAφyxxAφx=y
6 impexp xAφx=yxAφx=y
7 6 albii xxAφx=yxxAφx=y
8 df-ral xAφx=yxxAφx=y
9 7 8 bitr4i xxAφx=yxAφx=y
10 9 exbii yxxAφx=yyxAφx=y
11 2 5 10 3bitri *xAφyxAφx=y