Metamath Proof Explorer


Theorem rmoeqbidv

Description: Formula-building rule for restricted at-most-one quantifier. Deduction form. General version of rmobidv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses rmoeqbidv.1 φ A = B
rmoeqbidv.2 φ ψ χ
Assertion rmoeqbidv φ * x A ψ * x B χ

Proof

Step Hyp Ref Expression
1 rmoeqbidv.1 φ A = B
2 rmoeqbidv.2 φ ψ χ
3 1 eleq2d φ x A x B
4 3 2 anbi12d φ x A ψ x B χ
5 4 mobidv φ * x x A ψ * x x B χ
6 df-rmo * x A ψ * x x A ψ
7 df-rmo * x B χ * x x B χ
8 5 6 7 3bitr4g φ * x A ψ * x B χ