Metamath Proof Explorer


Theorem rmounid

Description: A case where an "at most one" restricted existential quantifier for a union is equivalent to such a quantifier for one of the sets. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypothesis rmounid.1 φxB¬ψ
Assertion rmounid φ*xABψ*xAψ

Proof

Step Hyp Ref Expression
1 rmounid.1 φxB¬ψ
2 1 ex φxB¬ψ
3 2 con2d φψ¬xB
4 3 imp φψ¬xB
5 biorf ¬xBxAxBxA
6 orcom xAxBxBxA
7 5 6 bitr4di ¬xBxAxAxB
8 4 7 syl φψxAxAxB
9 elun xABxAxB
10 8 9 bitr4di φψxAxAB
11 10 pm5.32da φψxAψxAB
12 11 biancomd φψxAxABψ
13 12 bicomd φxABψψxA
14 13 biancomd φxABψxAψ
15 14 mobidv φ*xxABψ*xxAψ
16 df-rmo *xABψ*xxABψ
17 df-rmo *xAψ*xxAψ
18 15 16 17 3bitr4g φ*xABψ*xAψ