Description: Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngdi.b | |
|
rngdi.p | |
||
rngdi.t | |
||
Assertion | rngdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngdi.b | |
|
2 | rngdi.p | |
|
3 | rngdi.t | |
|
4 | eqid | |
|
5 | 1 4 2 3 | isrng | Could not format ( R e. Rng <-> ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. a e. B A. b e. B A. c e. B ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) /\ ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) ) ) ) : No typesetting found for |- ( R e. Rng <-> ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. a e. B A. b e. B A. c e. B ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) /\ ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) ) ) ) with typecode |- |
6 | oveq1 | |
|
7 | oveq1 | |
|
8 | oveq1 | |
|
9 | 7 8 | oveq12d | |
10 | 6 9 | eqeq12d | |
11 | oveq1 | |
|
12 | 11 | oveq1d | |
13 | 8 | oveq1d | |
14 | 12 13 | eqeq12d | |
15 | 10 14 | anbi12d | |
16 | oveq1 | |
|
17 | 16 | oveq2d | |
18 | oveq2 | |
|
19 | 18 | oveq1d | |
20 | 17 19 | eqeq12d | |
21 | oveq2 | |
|
22 | 21 | oveq1d | |
23 | oveq1 | |
|
24 | 23 | oveq2d | |
25 | 22 24 | eqeq12d | |
26 | 20 25 | anbi12d | |
27 | oveq2 | |
|
28 | 27 | oveq2d | |
29 | oveq2 | |
|
30 | 29 | oveq2d | |
31 | 28 30 | eqeq12d | |
32 | oveq2 | |
|
33 | oveq2 | |
|
34 | 29 33 | oveq12d | |
35 | 32 34 | eqeq12d | |
36 | 31 35 | anbi12d | |
37 | 15 26 36 | rspc3v | |
38 | simpl | |
|
39 | 37 38 | syl6com | |
40 | 39 | 3ad2ant3 | Could not format ( ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. a e. B A. b e. B A. c e. B ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) /\ ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) ) ) -> ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) ) : No typesetting found for |- ( ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. a e. B A. b e. B A. c e. B ( ( a .x. ( b .+ c ) ) = ( ( a .x. b ) .+ ( a .x. c ) ) /\ ( ( a .+ b ) .x. c ) = ( ( a .x. c ) .+ ( b .x. c ) ) ) ) -> ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) ) with typecode |- |
41 | 5 40 | sylbi | |
42 | 41 | imp | |