Metamath Proof Explorer


Theorem rngoa4

Description: Rearrangement of 4 terms in a sum of ring elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ringgcl.1 G=1stR
ringgcl.2 X=ranG
Assertion rngoa4 RRingOpsAXBXCXDXAGBGCGD=AGCGBGD

Proof

Step Hyp Ref Expression
1 ringgcl.1 G=1stR
2 ringgcl.2 X=ranG
3 1 rngoablo RRingOpsGAbelOp
4 2 ablo4 GAbelOpAXBXCXDXAGBGCGD=AGCGBGD
5 3 4 syl3an1 RRingOpsAXBXCXDXAGBGCGD=AGCGBGD