Metamath Proof Explorer


Theorem rngoiso1o

Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses rngisoval.1 G=1stR
rngisoval.2 X=ranG
rngisoval.3 J=1stS
rngisoval.4 Y=ranJ
Assertion rngoiso1o RRingOpsSRingOpsFRRngIsoSF:X1-1 ontoY

Proof

Step Hyp Ref Expression
1 rngisoval.1 G=1stR
2 rngisoval.2 X=ranG
3 rngisoval.3 J=1stS
4 rngisoval.4 Y=ranJ
5 1 2 3 4 isrngoiso RRingOpsSRingOpsFRRngIsoSFRRngHomSF:X1-1 ontoY
6 5 simplbda RRingOpsSRingOpsFRRngIsoSF:X1-1 ontoY
7 6 3impa RRingOpsSRingOpsFRRngIsoSF:X1-1 ontoY