Metamath Proof Explorer


Theorem rnin

Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of Suppes p. 60. (Contributed by NM, 15-Sep-2004)

Ref Expression
Assertion rnin ranABranAranB

Proof

Step Hyp Ref Expression
1 cnvin AB-1=A-1B-1
2 1 dmeqi domAB-1=domA-1B-1
3 dmin domA-1B-1domA-1domB-1
4 2 3 eqsstri domAB-1domA-1domB-1
5 df-rn ranAB=domAB-1
6 df-rn ranA=domA-1
7 df-rn ranB=domB-1
8 6 7 ineq12i ranAranB=domA-1domB-1
9 4 5 8 3sstr4i ranABranAranB