Metamath Proof Explorer


Theorem rnmptbdlem

Description: Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbdlem.x xφ
rnmptbdlem.y yφ
rnmptbdlem.b φxABV
Assertion rnmptbdlem φyxAByyzranxABzy

Proof

Step Hyp Ref Expression
1 rnmptbdlem.x xφ
2 rnmptbdlem.y yφ
3 rnmptbdlem.b φxABV
4 nfcv _x
5 nfra1 xxABy
6 4 5 nfrexw xyxABy
7 1 6 nfan xφyxABy
8 simpr φyxAByyxABy
9 7 8 rnmptbdd φyxAByyzranxABzy
10 9 ex φyxAByyzranxABzy
11 nfmpt1 _xxAB
12 11 nfrn _xranxAB
13 nfv xzy
14 12 13 nfralw xzranxABzy
15 1 14 nfan xφzranxABzy
16 breq1 z=BzyBy
17 simplr φzranxABzyxAzranxABzy
18 eqid xAB=xAB
19 simpr φzranxABzyxAxA
20 3 adantlr φzranxABzyxABV
21 18 19 20 elrnmpt1d φzranxABzyxABranxAB
22 16 17 21 rspcdva φzranxABzyxABy
23 15 22 ralrimia φzranxABzyxABy
24 23 ex φzranxABzyxABy
25 24 a1d φyzranxABzyxABy
26 2 25 reximdai φyzranxABzyyxABy
27 10 26 impbid φyxAByyzranxABzy