Metamath Proof Explorer


Theorem rnun

Description: Distributive law for range over union. Theorem 8 of Suppes p. 60. (Contributed by NM, 24-Mar-1998)

Ref Expression
Assertion rnun ranAB=ranAranB

Proof

Step Hyp Ref Expression
1 cnvun AB-1=A-1B-1
2 1 dmeqi domAB-1=domA-1B-1
3 dmun domA-1B-1=domA-1domB-1
4 2 3 eqtri domAB-1=domA-1domB-1
5 df-rn ranAB=domAB-1
6 df-rn ranA=domA-1
7 df-rn ranB=domB-1
8 6 7 uneq12i ranAranB=domA-1domB-1
9 4 5 8 3eqtr4i ranAB=ranAranB