Metamath Proof Explorer


Theorem rossspw

Description: A ring of sets is a collection of subsets of O . (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis isros.1 Q = s 𝒫 𝒫 O | s x s y s x y s x y s
Assertion rossspw S Q S 𝒫 O

Proof

Step Hyp Ref Expression
1 isros.1 Q = s 𝒫 𝒫 O | s x s y s x y s x y s
2 1 isros S Q S 𝒫 𝒫 O S u S v S u v S u v S
3 2 simp1bi S Q S 𝒫 𝒫 O
4 3 elpwid S Q S 𝒫 O