| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnex |
|
| 2 |
|
qex |
|
| 3 |
1 2
|
rpnnen1 |
|
| 4 |
|
qnnen |
|
| 5 |
1
|
canth2 |
|
| 6 |
|
ensdomtr |
|
| 7 |
4 5 6
|
mp2an |
|
| 8 |
|
sdomdom |
|
| 9 |
|
mapdom1 |
|
| 10 |
7 8 9
|
mp2b |
|
| 11 |
1
|
pw2en |
|
| 12 |
1
|
enref |
|
| 13 |
|
mapen |
|
| 14 |
11 12 13
|
mp2an |
|
| 15 |
|
domentr |
|
| 16 |
10 14 15
|
mp2an |
|
| 17 |
|
2onn |
|
| 18 |
|
mapxpen |
|
| 19 |
17 1 1 18
|
mp3an |
|
| 20 |
17
|
elexi |
|
| 21 |
20
|
enref |
|
| 22 |
|
xpnnen |
|
| 23 |
|
mapen |
|
| 24 |
21 22 23
|
mp2an |
|
| 25 |
19 24
|
entri |
|
| 26 |
25 11
|
entr4i |
|
| 27 |
|
domentr |
|
| 28 |
16 26 27
|
mp2an |
|
| 29 |
|
domtr |
|
| 30 |
3 28 29
|
mp2an |
|
| 31 |
|
rpnnen2 |
|
| 32 |
|
reex |
|
| 33 |
|
unitssre |
|
| 34 |
|
ssdomg |
|
| 35 |
32 33 34
|
mp2 |
|
| 36 |
|
domtr |
|
| 37 |
31 35 36
|
mp2an |
|
| 38 |
|
sbth |
|
| 39 |
30 37 38
|
mp2an |
|