| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen |
|
| 2 |
|
nnenom |
|
| 3 |
|
pwen |
|
| 4 |
2 3
|
ax-mp |
|
| 5 |
1 4
|
entri |
|
| 6 |
|
omex |
|
| 7 |
6
|
pw2en |
|
| 8 |
5 7
|
entri |
|
| 9 |
|
xpen |
|
| 10 |
8 8 9
|
mp2an |
|
| 11 |
|
2onn |
|
| 12 |
11
|
elexi |
|
| 13 |
12 12 6
|
xpmapen |
|
| 14 |
13
|
ensymi |
|
| 15 |
|
ssid |
|
| 16 |
|
ssnnfi |
|
| 17 |
11 15 16
|
mp2an |
|
| 18 |
|
xpfi |
|
| 19 |
17 17 18
|
mp2an |
|
| 20 |
|
isfinite |
|
| 21 |
19 20
|
mpbi |
|
| 22 |
6
|
canth2 |
|
| 23 |
|
sdomtr |
|
| 24 |
21 22 23
|
mp2an |
|
| 25 |
|
sdomdom |
|
| 26 |
24 25
|
ax-mp |
|
| 27 |
|
domentr |
|
| 28 |
26 7 27
|
mp2an |
|
| 29 |
|
mapdom1 |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
|
mapxpen |
|
| 32 |
11 6 6 31
|
mp3an |
|
| 33 |
12
|
enref |
|
| 34 |
|
xpomen |
|
| 35 |
|
mapen |
|
| 36 |
33 34 35
|
mp2an |
|
| 37 |
32 36
|
entri |
|
| 38 |
|
domentr |
|
| 39 |
30 37 38
|
mp2an |
|
| 40 |
|
endomtr |
|
| 41 |
14 39 40
|
mp2an |
|
| 42 |
|
ovex |
|
| 43 |
|
0ex |
|
| 44 |
42 43
|
xpsnen |
|
| 45 |
44
|
ensymi |
|
| 46 |
|
snfi |
|
| 47 |
|
isfinite |
|
| 48 |
46 47
|
mpbi |
|
| 49 |
|
sdomtr |
|
| 50 |
48 22 49
|
mp2an |
|
| 51 |
|
sdomdom |
|
| 52 |
50 51
|
ax-mp |
|
| 53 |
|
domentr |
|
| 54 |
52 7 53
|
mp2an |
|
| 55 |
42
|
xpdom2 |
|
| 56 |
54 55
|
ax-mp |
|
| 57 |
|
endomtr |
|
| 58 |
45 56 57
|
mp2an |
|
| 59 |
|
sbth |
|
| 60 |
41 58 59
|
mp2an |
|
| 61 |
10 60
|
entri |
|
| 62 |
61 8
|
entr4i |
|