Step |
Hyp |
Ref |
Expression |
1 |
|
xpdom.2 |
|
2 |
|
brdomi |
|
3 |
|
f1f |
|
4 |
|
ffvelrn |
|
5 |
4
|
ex |
|
6 |
3 5
|
syl |
|
7 |
6
|
anim2d |
|
8 |
7
|
adantld |
|
9 |
|
elxp4 |
|
10 |
|
opelxp |
|
11 |
8 9 10
|
3imtr4g |
|
12 |
11
|
adantl |
|
13 |
|
elxp2 |
|
14 |
|
elxp2 |
|
15 |
|
vex |
|
16 |
|
fvex |
|
17 |
15 16
|
opth |
|
18 |
|
f1fveq |
|
19 |
18
|
ancoms |
|
20 |
19
|
anbi2d |
|
21 |
17 20
|
bitrid |
|
22 |
21
|
ex |
|
23 |
22
|
ad2ant2l |
|
24 |
23
|
imp |
|
25 |
24
|
adantlr |
|
26 |
|
sneq |
|
27 |
26
|
dmeqd |
|
28 |
27
|
unieqd |
|
29 |
|
vex |
|
30 |
15 29
|
op1sta |
|
31 |
28 30
|
eqtrdi |
|
32 |
26
|
rneqd |
|
33 |
32
|
unieqd |
|
34 |
15 29
|
op2nda |
|
35 |
33 34
|
eqtrdi |
|
36 |
35
|
fveq2d |
|
37 |
31 36
|
opeq12d |
|
38 |
|
sneq |
|
39 |
38
|
dmeqd |
|
40 |
39
|
unieqd |
|
41 |
|
vex |
|
42 |
|
vex |
|
43 |
41 42
|
op1sta |
|
44 |
40 43
|
eqtrdi |
|
45 |
38
|
rneqd |
|
46 |
45
|
unieqd |
|
47 |
41 42
|
op2nda |
|
48 |
46 47
|
eqtrdi |
|
49 |
48
|
fveq2d |
|
50 |
44 49
|
opeq12d |
|
51 |
37 50
|
eqeqan12d |
|
52 |
51
|
ad2antlr |
|
53 |
|
eqeq12 |
|
54 |
15 29
|
opth |
|
55 |
53 54
|
bitrdi |
|
56 |
55
|
ad2antlr |
|
57 |
25 52 56
|
3bitr4d |
|
58 |
57
|
exp53 |
|
59 |
58
|
com23 |
|
60 |
59
|
rexlimivv |
|
61 |
60
|
rexlimdvv |
|
62 |
61
|
imp |
|
63 |
13 14 62
|
syl2anb |
|
64 |
63
|
com12 |
|
65 |
64
|
adantl |
|
66 |
|
reldom |
|
67 |
66
|
brrelex1i |
|
68 |
|
xpexg |
|
69 |
1 67 68
|
sylancr |
|
70 |
69
|
adantr |
|
71 |
66
|
brrelex2i |
|
72 |
|
xpexg |
|
73 |
1 71 72
|
sylancr |
|
74 |
73
|
adantr |
|
75 |
12 65 70 74
|
dom3d |
|
76 |
2 75
|
exlimddv |
|