Metamath Proof Explorer


Theorem cpnnen

Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013)

Ref Expression
Assertion cpnnen 𝒫

Proof

Step Hyp Ref Expression
1 rexpen 2
2 eleq1w v=xvx
3 eleq1w w=ywy
4 2 3 bi2anan9 v=xw=yvwxy
5 oveq2 w=yiw=iy
6 oveq12 v=xiw=iyv+iw=x+iy
7 5 6 sylan2 v=xw=yv+iw=x+iy
8 7 eqeq2d v=xw=yz=v+iwz=x+iy
9 4 8 anbi12d v=xw=yvwz=v+iwxyz=x+iy
10 9 cbvoprab12v vwz|vwz=v+iw=xyz|xyz=x+iy
11 df-mpo x,yx+iy=xyz|xyz=x+iy
12 10 11 eqtr4i vwz|vwz=v+iw=x,yx+iy
13 12 cnref1o vwz|vwz=v+iw:21-1 onto
14 reex V
15 14 14 xpex 2V
16 15 f1oen vwz|vwz=v+iw:21-1 onto2
17 13 16 ax-mp 2
18 1 17 entr3i
19 rpnnen 𝒫
20 18 19 entr3i 𝒫