| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnex |  | 
						
							| 2 |  | qex |  | 
						
							| 3 | 1 2 | rpnnen1 |  | 
						
							| 4 |  | qnnen |  | 
						
							| 5 | 1 | canth2 |  | 
						
							| 6 |  | ensdomtr |  | 
						
							| 7 | 4 5 6 | mp2an |  | 
						
							| 8 |  | sdomdom |  | 
						
							| 9 |  | mapdom1 |  | 
						
							| 10 | 7 8 9 | mp2b |  | 
						
							| 11 | 1 | pw2en |  | 
						
							| 12 | 1 | enref |  | 
						
							| 13 |  | mapen |  | 
						
							| 14 | 11 12 13 | mp2an |  | 
						
							| 15 |  | domentr |  | 
						
							| 16 | 10 14 15 | mp2an |  | 
						
							| 17 |  | 2onn |  | 
						
							| 18 |  | mapxpen |  | 
						
							| 19 | 17 1 1 18 | mp3an |  | 
						
							| 20 | 17 | elexi |  | 
						
							| 21 | 20 | enref |  | 
						
							| 22 |  | xpnnen |  | 
						
							| 23 |  | mapen |  | 
						
							| 24 | 21 22 23 | mp2an |  | 
						
							| 25 | 19 24 | entri |  | 
						
							| 26 | 25 11 | entr4i |  | 
						
							| 27 |  | domentr |  | 
						
							| 28 | 16 26 27 | mp2an |  | 
						
							| 29 |  | domtr |  | 
						
							| 30 | 3 28 29 | mp2an |  | 
						
							| 31 |  | rpnnen2 |  | 
						
							| 32 |  | reex |  | 
						
							| 33 |  | unitssre |  | 
						
							| 34 |  | ssdomg |  | 
						
							| 35 | 32 33 34 | mp2 |  | 
						
							| 36 |  | domtr |  | 
						
							| 37 | 31 35 36 | mp2an |  | 
						
							| 38 |  | sbth |  | 
						
							| 39 | 30 37 38 | mp2an |  |