Metamath Proof Explorer


Theorem rprege0d

Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 φA+
Assertion rprege0d φA0A

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 1 rpred φA
3 1 rpge0d φ0A
4 2 3 jca φA0A