Metamath Proof Explorer


Theorem rpsqrtcl

Description: The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion rpsqrtcl A+A+

Proof

Step Hyp Ref Expression
1 rpre A+A
2 rpge0 A+0A
3 resqrtcl A0AA
4 1 2 3 syl2anc A+A
5 rpgt0 A+0<A
6 sqrtgt0 A0<A0<A
7 1 5 6 syl2anc A+0<A
8 4 7 elrpd A+A+