Metamath Proof Explorer


Theorem rrextchr

Description: The ring characteristic of an extension of RR is zero. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion rrextchr R ℝExt chr R = 0

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid dist R Base R × Base R = dist R Base R × Base R
3 eqid ℤMod R = ℤMod R
4 1 2 3 isrrext R ℝExt R NrmRing R DivRing ℤMod R NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif dist R Base R × Base R
5 4 simp2bi R ℝExt ℤMod R NrmMod chr R = 0
6 5 simprd R ℝExt chr R = 0