Metamath Proof Explorer


Theorem rspc2va

Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypotheses rspc2v.1 x=Aφχ
rspc2v.2 y=Bχψ
Assertion rspc2va ACBDxCyDφψ

Proof

Step Hyp Ref Expression
1 rspc2v.1 x=Aφχ
2 rspc2v.2 y=Bχψ
3 1 2 rspc2v ACBDxCyDφψ
4 3 imp ACBDxCyDφψ