Metamath Proof Explorer


Theorem s111

Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s111 SATA⟨“S”⟩=⟨“T”⟩S=T

Proof

Step Hyp Ref Expression
1 s1val SA⟨“S”⟩=0S
2 s1val TA⟨“T”⟩=0T
3 1 2 eqeqan12d SATA⟨“S”⟩=⟨“T”⟩0S=0T
4 opex 0SV
5 sneqbg 0SV0S=0T0S=0T
6 4 5 mp1i SATA0S=0T0S=0T
7 0z 0
8 eqid 0=0
9 opthg 0SA0S=0T0=0S=T
10 9 baibd 0SA0=00S=0TS=T
11 8 10 mpan2 0SA0S=0TS=T
12 7 11 mpan SA0S=0TS=T
13 12 adantr SATA0S=0TS=T
14 3 6 13 3bitrd SATA⟨“S”⟩=⟨“T”⟩S=T