Metamath Proof Explorer


Theorem s1dmALT

Description: Alternate version of s1dm , having a shorter proof, but requiring that A is a set. (Contributed by AV, 9-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion s1dmALT ASdom⟨“A”⟩=0

Proof

Step Hyp Ref Expression
1 s1val AS⟨“A”⟩=0A
2 1 dmeqd ASdom⟨“A”⟩=dom0A
3 dmsnopg ASdom0A=0
4 2 3 eqtrd ASdom⟨“A”⟩=0