Metamath Proof Explorer


Theorem s1eq

Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1eq A=B⟨“A”⟩=⟨“B”⟩

Proof

Step Hyp Ref Expression
1 fveq2 A=BIA=IB
2 1 opeq2d A=B0IA=0IB
3 2 sneqd A=B0IA=0IB
4 df-s1 ⟨“A”⟩=0IA
5 df-s1 ⟨“B”⟩=0IB
6 3 4 5 3eqtr4g A=B⟨“A”⟩=⟨“B”⟩