Metamath Proof Explorer


Theorem s3fn

Description: A length 3 word is a function with a triple as domain. (Contributed by Alexander van der Vekens, 5-Dec-2017) (Revised by AV, 23-Jan-2021)

Ref Expression
Assertion s3fn AVBVCV⟨“ABC”⟩Fn012

Proof

Step Hyp Ref Expression
1 s3cl AVBVCV⟨“ABC”⟩WordV
2 wrdfn ⟨“ABC”⟩WordV⟨“ABC”⟩Fn0..^⟨“ABC”⟩
3 1 2 syl AVBVCV⟨“ABC”⟩Fn0..^⟨“ABC”⟩
4 s3len ⟨“ABC”⟩=3
5 4 oveq2i 0..^⟨“ABC”⟩=0..^3
6 fzo0to3tp 0..^3=012
7 5 6 eqtr2i 012=0..^⟨“ABC”⟩
8 7 fneq2i ⟨“ABC”⟩Fn012⟨“ABC”⟩Fn0..^⟨“ABC”⟩
9 3 8 sylibr AVBVCV⟨“ABC”⟩Fn012