Metamath Proof Explorer


Theorem s4eqd

Description: Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 φA=N
s2eqd.2 φB=O
s3eqd.3 φC=P
s4eqd.4 φD=Q
Assertion s4eqd φ⟨“ABCD”⟩=⟨“NOPQ”⟩

Proof

Step Hyp Ref Expression
1 s2eqd.1 φA=N
2 s2eqd.2 φB=O
3 s3eqd.3 φC=P
4 s4eqd.4 φD=Q
5 1 2 3 s3eqd φ⟨“ABC”⟩=⟨“NOP”⟩
6 4 s1eqd φ⟨“D”⟩=⟨“Q”⟩
7 5 6 oveq12d φ⟨“ABC”⟩++⟨“D”⟩=⟨“NOP”⟩++⟨“Q”⟩
8 df-s4 ⟨“ABCD”⟩=⟨“ABC”⟩++⟨“D”⟩
9 df-s4 ⟨“NOPQ”⟩=⟨“NOP”⟩++⟨“Q”⟩
10 7 8 9 3eqtr4g φ⟨“ABCD”⟩=⟨“NOPQ”⟩